
 Procedia Engineering   83  ( 2014 )  52 – 59 

1877-7058 © 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Scientific Committee of SYMPHOS 2013
doi: 10.1016/j.proeng.2014.09.012 

ScienceDirect
Available online at www.sciencedirect.com

 
“SYMPHOS 2013”, 2nd International Symposium on Innovation and Technology in the Phosphate 

Industry 

Cadmium and Phosphorous Fertilizers: The Issues and the Science 

Terry L. Robertsa* 
International Plant Nutrition Institute, Norcross, GA, USA 

Abstract 

Non-nutritive metals, such as cadmium (Cd), occur naturally in all agricultural soils, in soil amendments (e.g. biosolids), and to varying 
degrees in phosphorous (P) fertilizers.  Its persistence in the environment and its uptake and accumulation in the food chain make Cd a 
public health concern.  The main effect of Cd on human health is kidney disease, and although other adverse effects have been reported 
(e.g. pulmonary, cardiovascular, and musculoskeletal systems), controversy exists regarding their effects. The only known case of Cd 
toxicity (i.e. itai-itai disease) occurred with subsistence farmers in Japan growing rice on soils contaminated with industrial wastes. 
Cadmium behaviour in soil and its accumulation by crops is complicated.  Numerous factors (e.g. soil pH, organic matter content, salinity, 
macro and micronutrient fertilizers, crops species and cultivar, and tillage) influence the bioavailability and uptake of Cd by crops.  
Because fertilization increases the risk of Cd transfer to the food chain, some governments have imposed limits restricting the Cd content 
of P fertilizers.  However, scientific risk assessments have shown that P fertilizer containing Cd is safe and does not pose risk to human 
health. 
 
© 2014 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Cadmium is a trace element, a non-nutritive metal regarded as harmful to humans and the environment. It occurs 
naturally in the earth’s crust and oceans and can be added to the soil through natural (e.g. volcanic activity, weathering of 
Cd-containing rocks, sea spray) and anthropogenic activities (e.g. mining and smelting of zinc (Zn)-bearing ores, fossil fuel 
combustion, waste incineration, sewage sludge, irrigation waters, manure, and fertilizers derived from phosphate rock) [1] 
[2]. While not essential to crop growth, or known to be essential to biological systems, agricultural crops will take up and 
accumulate Cd depending on its availability in the soil and their genetic characteristics [3] [4]. And, depending on its 
concentration in the soil, Cd can negatively impact soil organisms and soil ecology [5].  

2. Health Concerns 

2.1 Impacts of cadmium on human health and exposure routes 

Public health concerns with Cd are primarily due to its persistence in the environment and its relatively rapid uptake and 
accumulation in the food chain. Although the health effects of Cd have been studied extensively, controversy exists 
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regarding some of the effects.  The U.S. Department of Health [6] and the European Commission’s Institute of Health and 
Consumer Protection [7] have recently summarized the health effects of Cd, updating information published by the 
Organization for Economic Cooperation and Development almost 20 years ago [8]. The main toxic effect of Cd in human 
health is on the kidney, or renal cortex, but other adverse health effects on pulmonary, cardiovascular, and musculoskeletal 
systems have been reported, including Cd as a human carcinogen. The nonsmoking general population is mainly exposed to 
Cd through ingestion of food, and to a lesser extent by air and drinking water. Studies show the average dietary intake of Cd 
for nonsmokers living in uncontaminated areas is between 10 and 25 μg Cd per day and that average has been declining 
over the past 30 years [6] [8]. The World Health Organization has established a provisional tolerable weekly intake for Cd 
at 7 μg/kg body weight, i.e. 60-70 μg Cd per day for an average 60-kg women or 70-kg man [9]. Smoking is a significant 
source of Cd because tobacco leaves naturally accumulate high levels of Cd [10]. It is estimated that tobacco smokers are 
exposed to 1.7 μg Cd per cigarette and about 10% is absorbed by the body when smoked. 

2.2 Cadmium toxicity and bioavailability in foods 

While dietary intake is the primary exposure route for non-smoking adults and children, acute toxicity caused by food 
consumption is rare [11].  Plants can accumulate high enough concentrations of Cd to become phytotoxic, but risk of food-
chain toxicity occurs before phytotoxicity is apparent because of chronic exposure through the food chain.   Prolonged 
exposure to low levels of Cd in air, food and water can lead to its accumulation in the human body in the kidney and bone 
following oral exposure and kidney and lung following inhalation exposure. Its biological half-life is estimated to range 
from 6 to 38 years in the kidney and 4 to 19 years in the liver [12]. 

The adverse effects of Cd on human health were first observed in subsistence rice farmers in Japan in the mid-1950s. 
They contracted Cd poisoning (itai-itai disease) after decades of consuming home-grown rice irrigated with Cd- and Zn-
enriched mine wastes. [13]. The disease caused a softening of the bones and kidney failure. Chaney [11] reports that similar 
Cd kidney disease has been found in other areas in Asia in populations consuming rice grown on contaminated paddy soil, 
but other documented cases of Cd-induced disease are rare. 

The recognition by food authorities and scientists that Cd caused itai-itai disease in Japan prompted concern for any 
potential source of Cd that could introduce Cd into the food chain. Food chain risks from Cd are complicated because 
bioavailability of Cd in foodstuffs differs greatly. For example, documented cases of people’s prolonged consumption of 
Cd-rich shellfish [14] [15] [16] or garden produce from soils contaminated with Cd and Zn [17] [18] show no evidence of 
Cd disease. Apparently when Zn accompanies Cd in contaminated soil, it can inhibit both the uptake and bioavailability of 
Cd [11].   
 
2.3 Other complicating factors 

Chaney [11] has thoroughly reviewed the literature demonstrating the complexity of risks from food chain Cd.  Some 
examples he cited from controlled human and animal feeding tests are: increased dietary Zn inhibits Cd absorption while 
mild iron (Fe) deficiency increases absorption; Cd concentration is higher in whole wheat and bran than white flour, but its 
absorption from these products is less; and adding Fe to bread wheat reduces Cd retention. Based on the above examples 
and knowing that polished rice is deficient in Fe, Zn, and calcium (Ca), Reeves and Chaney [19] reported on their research 
that showed rats fed polished rice diets absorbed 10-fold more Cd than rats fed adequate levels of Fe, Zn, and Ca. They also 
reported that Cd absorption from sunflower kernels, which have higher levels of Fe, Zn, and Ca than polished rice, was 
significantly less than that from polished rice.  Based on the research reported above and other published studies reviewed, 
Chaney [11] concluded, “… the science is clear that diet-induced Cd disease is very unusual except for rice subsistence 
farmers over 50 years old.”  

The scientific literature shows that under conditions of Fe, Zn and/or Ca deficiency or nutritional stress, Cd adsorption by 
the intestines is increased [20]. Compared to diets adequate in Fe and Zn, Fe and Zn deficiency can increase Cd retention 
15-fold. Rice is generally deficient in Fe, Zn, and Ca for human needs. The bioavailability of Cd in food is related to the 
nutritional balance of Fe, Zn, and other nutrients.  Dietary Fe, Zn, and Ca inhibit absorption and retention of dietary Cd and 
explain the lack of Cd disease in individuals exposed to extreme soil and food Cd contamination. 

3. Cadmium in Soil and Fertilizer 

3.1 Cadmium in Soil 
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Soil Cd is derived from weathering of rocks and minerals or from numerous anthropogenic sources [1].  A world 
literature review by Kabata-Pendias and Pendias [21] determined that average concentrations of Cd in non-polluted soils are 
between 0.06 to 1.1 mg/g, with a minimum of 0.01 and a maximum of 2.7 mg/g. They cited various studies showing mean 
background concentrations in the USA (3045 samples) were found to be 0.27 mg/kg; 0.6-0.7 mg/kg in the UK (5692 
samples); 0.5 mg/kg in the Netherlands (708 samples); and <0.3-1.0 mg/kg in Germany (2947 samples).  

Natural background levels of Cd in agricultural soils can be increased through atmospheric deposition (e.g. forest fires, 
volcanic eruptions, soil erosion, air pollution), land application of sewage sludge and manure, and fertilizers. Incineration of 
municipal wastes, non-ferrous metal production, Fe and steel production, and combustion of fossil fuels contribute Cd to the 
air, but these sources are only significant in industrialized areas.  Alloway and Steinnes [1] cited various sources showing 
atmospheric deposition in European countries ranges from 2.0 to 12.5 g/ha/yr while annual deposition in the USA is 
estimated to be less than 2.8 g/ha [22].  Sewage sludge can contain concentrations of Cd ranging from >1 to 3650 mg/kg 
[23].  Estimates for land receiving sludge can range from 30-40 g/ha/yr [1].  About 90% of the Cd ingested by animals from 
feedstuffs passes into manure, and aside from being a Cd source, manure helps mobilize soil Cd making it more available to 
plants [24]. 

3.2 Cadmium in Fertilizer 

Cadmium occurs naturally in phosphate rock.  The International Fertilizer Development Center (IFDC) summarized Cd 
content of phosphate rocks obtained from 35 sedimentary deposits in 20 countries [25].  Data for countries among the top 
world producers is shown in Table 1. It is apparent that concentration of Cd can vary widely between countries and within 
deposits in the same country. The overall average Cd concentration for sedimentary deposits was 21 mg/kg with a range of 
less than 1 to 150 mg/kg.  Compared with non-phosphate containing rock, sedimentary phosphate rock deposits are about 69 
times more enriched with Cd.  Data from 11 igneous phosphate rock deposits in 9 countries surveyed by IFDC showed an 
average Cd concentration of 2 mg/kg and were enriched 7.5 times crustal abundance. 

Sedimentary phosphate rock deposits dominate world production and reserves (Table 2).  Approximately 85% of the 
world production is from sedimentary deposits. Varying amounts of Cd in the phosphate rock move through the 
beneficiation and acidulation processes during fertilizer manufacture.  Amounts transferred depend on the manufacturing 

Table 1. Cadmium contents (mg/kg) of sedimentary and igneous phosphate rocks [25]. 

Country Deposit Average Cd Range 
 

 
Sedimentary Deposits 
China Kaiyang <2 — 
Israel Zin 

Undifferentiated 
Arad 
Oron 

31 
24 
14 
5 

20-40 
20-28 
12-17 

— 
Jordan El-Hasa 

Shidyia 
5 
6 

3-12 
— 

Morocco Undifferentiated 
Bou Craa 
Khouribga 
Youssoufia 

26 
38 
15 
23 

10-45 
32-43 
3-27 
4-51 

Senegal Taiba 87 60-115 
Syria Khneifiss 3 — 
Togo  58 48-67 
Tunisia  40 30-56 
United States Central Florida 

North Florida 
Idaho 
North Carolina 

9 
6 

92 
38 

3-20 
3-10 

40-150 
20-51 

Other countries  13 <1-100 
Overall Sedimentary Averages 21 <1-150 
 
Igneous Deposits 
Brazil Araxa 

Catalao 
2 

<2 
2-3 
— 

South Africa Phalaborwa 1 1-2 
Russia Kola 1 <1-2 
Other countries  1 1-5 
Overall Igneous Averages 2 <1-4 
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process. For ordinary (single) superphosphate (SSP) produced by reacting phosphate rock with sulphuric acid and triple 
super phosphate (TSP) produced by acidulation of the phosphate rock with phosphoric acid, all of the Cd in the phosphate 
rock is transferred to the SSP or TSP.  Depending on the phosphate rock source, SSP can contain from 2 to more the 40 
mg/kg and TSP can have from less than 10 to over 100 mg/kg Cd content [25]. In wet process phosphoric acid (WPA) Cd is 
transferred to the acid and gypsum by-product.  About 55 to 90 percent of the Cd is transferred to the acid with the balance 
to the gypsum.  Ammonium phosphates (e.g. monoammonium phosphate [MAP] and diammonium phosphate [DAP]) are 
produced from WPA. Again, depending on the source of phosphate rock, their Cd content can range from less than 1 to 
more than 100 mg/kg. 

Robarge et al. [27] surveyed the trace metal content of various fertilizers sampled from production facilities around 
North America over a two-year period (1999-2000). They found the average Cd content of DAP/MAP, based on 84 
different samples, ranged from 16 to 22 mg/kg and 19 mg/kg for 45 samples of TSP.  Samples for other fertilizer products 
(e.g. urea, potassium chloride, ammonium sulphate, ammonium nitrate) had negligible amounts of Cd (i.e. < 0.01 mg/kg) 

 
3.3 Factors affecting cadmium accumulation, bioavailability and uptake by crops 

Amounts of Cd added to agricultural soils through P fertilizer are a function of rate and frequency of application and the 
concentration of Cd in the fertilizer.  While the net Cd balance depends on the crops grown and the fertilizer source, both 
the input and output of Cd tend to be low compared to the total amount of Cd present in the soil [28] [29]. The solubility of 
the fertilizer determines the short-term availability of the Cd. Grant [30] reviewed greenhouse studies showing Cd 
concentrations in crops was increased by application of fertilizers containing very high levels of Cd (417 mg/kg), but not by 
addition of low-solubility phosphate rock containing similar amounts of Cd.  In field studies in the Canadian Prairies with 
durum wheat, the Cd concentration in the wheat increased with the application of MAP, but was generally not affected by 

 
Table 2. World production and reserve of rock phosphate [26]. 

 2010 2011 Reserves 

 --------------- 1,000 metric tons --------------- 

United States 25,800 28,400 1,400,000 

Algeria 1,800 1,800 2,200,000 

Australia 2,600 2,700 250,000 

Brazil 5,700 6,200 310,000 

Canada 700 1,000 2,000 

China 68,000 72,000 3,700,000 

Egypt 6,000 6,000 100,000 

India 1,240 1,250 6,100 

Iraq — — 5,800,000 

Israel 3,140 3,200 180,000 

Jordan 6,000 6,200 1,500,00 

Mexico 1,510 1,620 30,000 

Morocco 25,800 27,000 50,000,000 

Peru 791 2,400 240,000 

Russia 11,000 11,000 1,300,000 

Senegal 950 950 180,000 

South Africa 2,500 2,500 1,500,000 

Syria 3,000 3,100 1,800,000 

Togo 850 800 60,000 

Tunisia 7,600 5,000 100,000 

Other Countries 6,400 7,400 500,000 

World total (rounded) 181,000 191,000 71,000,000 
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the concentration of Cd in the fertilizer [31]. For example, the Cd content of durum wheat fertilized with MAP containing 
varying amounts of Cd (i.e. 0.2, 7.8, and 186 μg/g) grown at 11 different locations over a three year period was not 
generally affected by the amount of Cd in the fertilizer.  Similar results have been observed in potato field trials in Australia 
where the concentration of Cd in the P fertilizer had little effect on the uptake of Cd by the potatoes [32].  However, in the 
long-term, Cd added to the soil through P fertilization tends to accumulate if input is less than crop removal.  Grant [30] 
reviewed numerous studies showing the application of P fertilizers containing 20 to 50 mg /kg of Cd led to significant 
increases in the Cd concentration of the soil, which may lead to higher crop Cd accumulation. 

The risk of Cd accumulation by crops is more related to its availability due to soil, crop, management, and environment 
than the total Cd present in the soil. Soil pH is usually regarded as the most significant variable influencing Cd uptake from 
the soil (see reviews by Grant and Sheppard [4]; Chaney [11]; McLaughlin et al. [33]; Grant et al. [37]). Decreasing pH 
(increasing acidity) increases Cd uptake by plants, thus liming will reduce Cd bioavailability. Soil organic matter and 
adding organic matter to soils also influences Cd bioavailability. Soils with higher organic matter have higher cation 
exchange capacity, which increases Cd adsorption. Soil pH and organic matter may interact in their effects on Cd 
availability. Organic matter has been found to reduce Cd concentration in the soil solution in contaminated soils at pH 
below 6.0 and increase soil concentration at pH 6.0-8.0. Organic materials (e.g. manure and sludges) appear to reduce the 
availability of Cd [34].  For example, soils from the long-term trials at Rothamsted, England accumulated more Cd in the 
farm-yard manure treated plots, but produced wheat with lower Cd concentrations than P fertilized plots [35]. Soil chloride 
(Cl) increases the mobility of Cd through the formation of Cd-Cl complexes resulting in increased Cd absorption by plants 
in saline soils or soils irrigated with high Cl water  (e.g. Norvell et al. [36]). McLaughlin et al. [33] indicated soil 
temperature, redox potential, and application of nitrogen (N), P, and potassium (K) and micronutrients (i.e. Zn) also affect 
plant uptake of Cd.  However, we have little control over soil temperature or redox potential. Macronutrients can stimulate 
root growth, acidify the soil (i.e. N fertilizers), and increase ionic strength of the soil solution thereby reducing Cd 
adsorption, all of which makes Cd more available. Small applications of Zn (< 10 kg Zn/ha) in low Zn soils can reduce Cd 
in wheat grain and Zn applied with P fertilizer can desorb Cd from the cation exchange increasing Cd in soil solution.  
However, Zn also competes with Cd for uptake and translocation by plants, so Zn can also reduce Cd accumulation by 
crops. To further complicate Cd bioavailability, P fertilizer itself may restrict crop uptake of Zn, which also potentially 
increases Cd accumulation [4]. Other factors known to influence crop concentrations of Cd include soil drainage, preceding 
legume, and tillage [11]. 

It is apparent from the above discussion that Cd availability to crops is complicated and difficult to predict or manage.  
Another option to reduce Cd uptake is through plant breeding. Crop species and cultivars differ widely in their ability to 
take up and accumulate Cd [37] [38].  Cereals and legumes accumulate less Cd than leafy crops, but there also can be great 
differences in accumulation within cultivars. The genetic variation among cultivars means there is great potential for 
utilizing plant-breeding to select for low-Cd characteristics in crops. 

4.0 Risk rom Cd in P Fertilizer 

4.1 Cadmium regulations for P fertilizer 

Cadmium behaviour in the soil and accumulation by crops is complex. Fertilization can increase the risk of Cd 
movement into the food chain through direct addition to the soil from some P fertilizers and indirectly from fertilizer-
induced changes in Cd bioavailability.  Because of the potential risk to human health, several countries have implemented 
regulations limiting the amount of Cd that can be present in P fertilizers (Table 3).  
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These limits, and the underlying assumptions upon which they are based, vary greatly. The European Commission has 
proposed much stricter limits transitioning from 60 to 20 mg Cd/kg P2O5 over a 15-year period [39] [40]. These limits are 
based on the conclusions of an impact assessment study that stated fertilizers containing 20 mg Cd/kg P2O5, or less, are not 
expected to result in long-term accumulation in the soil and fertilizers containing 60 mg Cd/kg P2O5 could result in long-
term accumulation of Cd in the soil. The rationale for the limits provided by the proposal [39] provide little scientific 
evidence justifying a limit of 20 mg Cd/kg P2O5 and there is little evidence in the scientific literature suggesting that Cd 
would accumulate in soils through using P fertilizers containing less than 60 mg Cd/kg P2O5, much less pose human health 
risks. 

4.2 Cadmium risk assessments 

Chemical exposure and risk assessment is a common and accepted scientific practice used for setting health standards or 
safe limits as part of a risk management process [41]. Risk assessments determine the magnitude of exposure (both 
frequency and duration) and can be used to predict whether a sensitive receptor (e.g. farm family adult and/or child) faces a 
health risk.  The U.S. EPA [41], the California Department of Food and Agriculture (CFDA) [42], and the Weinberg Group 
on behalf of The Fertilizer Institute (TFI) [43] have conducted health risk assessments examining safe limits for non-
nutritive elements in fertilizers. These assessments incorporated typical agricultural practices and high-end application rates 
covering a wide range of agricultural NPK fertilizers and micronutrients. Woltering [41] reported that all three assessments 
used similar methodologies, but only TFI’s assessment will be discussed here [44]. Risk-based concentrations (RBCs) in 
parts per million (ppm; 1 ppm = 1 mg/kg) were calculated for specific metals in NPK fertilizers, and micronutrients that do 
not pose a health risk, following their use and exposure over a sensitive person’s lifetime. 

Phosphate fertilizer products with varying concentrations of Cd (2 -150 mg/kg) and applied at typical rates (e.g. grain, 70 
kg/ha; vegetables, 133 kg/ha; and root crops, 176 kg/ha) from across the USA were selected for the assessment.  Exposure 
from dermal contact with fertilized soil, unintentional soil ingestion and eating crops (i.e. root crops, vegetables, and grains) 
that may have taken up metals was estimated for farm families (children and adults).  The model considered metal content 
of the fertilizer, application rate, soil accumulation, plant uptake factors, and accepted protective levels in diets. RBCs for a 
given metal in fertilizer were back calculated from a protective level in the diet along with consideration of the exposure 
route. The RBC unit is based on 1% of the nutrient (i.e. P2O5) and the corresponding application rate needed to achieve its 
desired level in the soil. RBCs are estimates of the maximum level of a metal in the fertilizer that does not pose an 

Table 3. Limits for Cd in P fertilizers in several countries expressed as Cd:P ratio, Cd:P2O5 or concentration of Cd in the 
fertilizer product. (adapted from Chaney [11]). 

Country Limits mg Cd/kg P mg Cd/kg P2O5 mg Cd/kg 45% P2O5 
Product 

Limits for Fertilizer-Cd 

USA-Washington 0.0889 kg Cd/ha/yr 2040 889 400 

USA-Oregon 7.5 mg Cd/% P2O5 774 338 152 

USA-California 4 mg Cd/% P2O5 412 180 81 

Australia 300 mg Cd/kg P 300 131 59 

Canada 0.0889 kg Cd/ha/yr 2040 889 400 

Japan  340 148 67 

Austria 75 mg Cd/kg P2O5 275 120 54 

Belgium 90 mg Cd/kg P2O5 206 90 40.5 

Denmark  110 48.0 21.6 

Netherlands  40 17.5 7.9 

Finland 21.5 mg Cd/kg P2O5 49 21.5 9.7 

Sweden 43 mg Cd/kg P2O5 100 43.7 19.7 

     

EU Proposal (2001) 20 mg Cd/kg P2O5 45.8 20 9 

 40 mg Cd/kg P2O5 91.6 40 18 

 60 mg Cd/kg P2O5 137 60 27 
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unacceptable lifetime health risk. Woltering [41] outlined the specific methodology used to determine the RBCs in detail. 
RCBs were calculated for three crops separately and for a multi-crop diet (50% grain, 40% vegetables, and 10% root). The 
RBC value for Cd was 10 mg/kg per 1% P2O5.  For example, for MAP containing 55% P2O5, the RBC would be 550 (i.e. 10 
mg/kg x 55), which means if the Cd concentration in the MAP is below 550 mg/kg, that fertilizer can be used without 
posing lifetime health risks for the most highly exposed individuals. 

The three risk assessments mentioned above (i.e. the U.S. EPA, CFDA, and TFI) share much of the same methodology 
and underlying science; all three concluded that in nearly all cases, the metal levels found in fertilizers in North America do 
not pose risk to the farmers applying them, their families, or to the general public [41]. 

5.0 Summary and Conclusions 

Cadmium is a naturally occurring, non-nutritive metal found in soil and minerals.  Its persistence in the environment and 
its uptake and accumulation in the food chain makes Cd a public health concern.  Adverse health effects from Cd exposure 
have been studied extensively, but the only known case of Cd toxicity (itai-itai disease) occurred with subsistence farmers 
in Japan growing rice on soils heavily contaminated with Cd from industrial wastes.  Phosphate rock contains varying 
amounts of innate Cd and some of that Cd is transferred to fertilizer products during the manufacturing process. In addition 
to other anthropogenic activities (e.g. mining Zn bearing ores, combustion of fossil fuel, waste incineration, land application 
of sewage sludge and manure, and irrigation water), P fertilization can add Cd to agricultural soils. Cadmium behaviour in 
the soil and its accumulation by crops is complex; numerous factors (e.g. pH, organic matter, salinity, macro and 
micronutrient fertilization, crop species and cultivar, tillage, and liming) affect the bioavailability and uptake of Cd by 
crops.  Because fertilization increases the risk of Cd movement into the food chain, several countries have implemented 
regulations limiting the amount of Cd that can be present in P fertilizers. Scientific risk assessments have been conducted 
that show that the use of P fertilizer containing current levels of Cd is generally safe and does not pose risk to the farmers 
that use them or the general public. 
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